RADIANT-CONDUCTIVE HEAT TRANSFER IN
A PLANE AMMONIA LAYER

N. A. Rubtsov and P. I. Stepanenko UDC 536.3

Results of experimental and theoretical investigations of radiant-conductive heat transfer
in a plane ammonia layer are presented.

A number of theoretical and applied studies related with calculations of complex heat transfer [1-5]
and the solution of certain auxiliary problems pertinent to thermophysical investigations are devoted to an
investigation of heat transfer in plane layers of absorbent media. At the same time there are few experi-
mental studies along this line.

Here we will present an experimental and theoretical examination of radiant-conductive heat trans-
fer in an approximation of one-dimensional heat transfer in a plane layer of absorbent gas.

The physical scheme of the experiment amounts to the following, Two metal plates made in the form
of thin disks are arranged in plane-parallel planes and form the layer of investigated medium. The plates
are maintained in an isothermic state, the upper plate being heated and the lower one being cooled (Fig. 1).
The isothermicity of the plates and layer in the planes of the parallel plates is checked by means of thermo~
couples embedded in the plates and by special nichrome —constantan thermocouples (diameter 0.06 mm)
moving within the layer (Fig. 1). This gave grounds to assume that the steady flow of heat throughout the
layer is one-dimensional. The selection of the distance between plates which excludes free convection in
the space between them was determined indirectly from the results of measuring the temperature dis-
tribution in the layer of a diathermic medium (linear character of distribution) under various pressure con-
ditions (from P ~ 40 mm Hg to P ~ 2 abs. atm).

The position of the movable thermocouples relative to the bounding surfaces was determined by a
KM6 cathetometer. The temperature level of the heated plate was maintained by regulating the voltage
supplied to the heater. The chamber was preliminarily evacuated (~5-10~? mm Hg) before filling with the
investigated gas.

The experimental investigation amounted to measuring the temperature distribution of the gas (from
the readings of the near-axial thermocouple) as a function of the optical thickness of the medium and of the
temperature difference between plates.

To conduct standard measurements and to estimate the errors due to irradiation of the thermocouples,
a diathermic medium (air) was enlisted in the first study. In this case the process of heat transfer in the
layer is determined by molecular heat conductivity. The solution of the equation of heat conductivity

d <;x dT\J:O’ (1)
dy dy

TO) =T, T©) =T,

in the case of validity of the linear character of the temperature dependence of the coefficient of heat con-
ductivity

h=a+bT (2)
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Fig. 1. Diagram of experimental device: 1) exterior
cylindrical casing; 2) interior casing; 3) insulation of
layers of glass fabric and stainless steel foil; 4)
heater; 5) Plexiglas observation ports; 6) refrigerator
(water); 7) lead to backing pump; 8) water inlet and
outlet with rubber seals; 9) lead for thermocouples:
10) conductor to heater; 11) outlets for gas; 12) ex-
perimental plates forming the investigated gas layer;
13) movable thermocouples.

is written
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Figure 2 presents the results of calculating the temperature distribution (¢ = (T — Ty)/(Ty —T)) in

the layer of air at T, = 508°K.

The experimental results, indicating good agreement with the calculation, are also presented there.
The slight divergence due to irradiation of the bead of the thermocouples owing to its small size and low
temperature level proved to be insignificant.

In the case of the absorbent medium the indicated error is apparently smaller owing to partial shield-
ing of radiation of the heated surface by the medium.

As an absorbent medium we used gaseous ammonia NH; having good absorptivity. The absorption
coefficient v is determined by the total emittance of the layer, and the processes of heat transfer by radia-
tion are considered in an approximation of a model of a gray medium.

Radiant-conductive heat transfer in a plane layer of a gray heat-conducting body is described by a
nonlinear integral equation representing the formal solution of the nonlinear integro-differential equation of

energy
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Fig. 2. Distribution of dimensionless temperature ¢ in a layer of a diathermic medium (air):
a) experiment (t = 235°C); 1) solution by (3) (¢/b = 56.6); 2} solution at A = const.
Fig. 3. Distribution of dimensionless temperature 4 in a layer of an absorbent NH; medium
(P =1 abs. atm, 6 =12 mm): a) experiment (8; = 0.6; 8, = 1.0; Ny ,, = 0.026; a/x, =—0.347;
bT,/2a =-1.93; hy = 0.15); 1) solution of (5) under the experimental condifions; 2) the same,

for A = const (6; = 0.6; 6, =1.0: b =0; A =a at t = 0°C; hy = 0.15); 3) solution of (5) for h,
= 0.30 under the experimental conditions,

Here E is the hemispheric density of the resultant radiation flux, determined in conformity with the radia-
ting system being considered by the integral relation presented in [8].

On the assumption of a linear character of the temperature dependence of the coefficient of molec~
ular heat conductivity, the temperature distribution in the layer is determined by solving the nonlinear
integral relation:

fo
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obtained from {4) by successive integration with consideration of the boundary conditions. The geometric
—optical parameters of radiation x; (b}, x,(h), G(h, £), and D, representing functionals of the optical prop-
erties of the boundaries A, R of the medium h, h; and of the exponential integrals K, are determined by:

R, R
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2o (h) = K, () — K, (g — By + [ L K (h>)+2R Kyl |~ — K, — (L — K,y (9)

L2 A 0 4 0 }10(3 4 0, 1°\3 90, 3 & h 3 & 0. ’
D =1 —4R, R, K3 (hy). (10)
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The total radiant-conductive flux is determined by the following integral relation:
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Integral equation (5) is solved numerically by Newton's iterative method. In this case the linear distribu-
tion of temperature ¢ = 8y + [h(9; — 6,)/ g} was used as the initial approximation.

Figure 3 presents the results of comparing the numerical solution of Eq. (5), transformed to the form
¢ = (&), with the experiment in conformity with the measurements of the temperature distribution in the
NH, layer at P =1 abs. atm of thickness 6 =12 mm formed by two plates, of which the upper, heated plate
radiates well (stainless steel, A, = 0.85) and the lower, cooled plate reflects effectively (brass, A; = 0.15).

The absorption spectrum of NH; has two characteristic regions in the 6 and 10 u range [9]. Accord-
ing to Wein's displacement law this corresponds to a radiation peak of the upper plate at temperatures of
~500°K and ~300°K, respectively. In this connection the temperature of the upper plate in the éxperiment
was maintained at the level T, = 500°K (Ty = 290°K). The total emittance of the layer (¢ =1 — exp (-1 9)),
determined in [10] as a function of T and pd, is equal to ~0.15. The optical thickness of the layer hy = ®0
=0.15. In the temperature being considered, according to [11],

Ayt

PTe 193, Ny = — %% _ 0.06.
2a 40,T,

4 0.347,

®

In this case the temperature of the heated surface T, =T, is taken as the characteristic temperature.
The satisfactory agreement between the experimental measurement and the results of the numerical solu-
tion confirm the validity of the heat-transfer model described by integral equation (5).

Figure 3 also presents the results of solving (5) for hy = 0.15, 6, =0.6, 6, =1.0, and A =a (t = 0°C,
b = 0). They attest to the fundamental importance of taking the function A = A(T) into account.

The results of the solution of Eq. (5) for parameters determined by the experimental conditions but
for hy = 0.30 reflect the essential role of the optical density of the layer of the medium in the temperature
distribution.

The mean-free path of a photon 1/« as applied to the experimental conditions exceeds the dimen-
sions of the layer, but the process of multiple reflections from the surface of the lower plate slightly in-
creases the effective dimensions of the layer and therefore increases the probability of c ollisions within
the absorbent medium.

In connection with this, the effective heat conductivity as applied to cases of low optical density.
should be analyzed with consideration of the real values of the optical properties of the boundaries of the
investigated layer of the medium.

We can show that in the case of small temperature drops the expression for the effective heat con-
ductivity can be represented in a closed form.

The expression for the density of a radiant-conductive heat flux is written as:

dar
=—M— —E(h 15)
q T ) (
or (after integration and consideration of the boundary conditions) as

hy

q=—mT1—;T?-—§E(h) dh. (16)
0
0
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Using the expression for the hemispherical density of the resultant radiation in [8] and integrating it by
parts, we represent (16) in the following form:

he Ro

q A “hh S g (h, & 4 Edh. (17)
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dg dh

=T ;4 , we obtain:
dy

Setting

= const (linear character of the radiation distribution in the layer of absorbent

medium) and Ax
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Here
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Thus the expression for the effective heat conductivity
heg=h + ’1—36—%‘ T*F (%8, Ry, Ry) (22)
b

reflects, besides the optical thickness of the medium, the effect of the optical properties of the radiating
boundaries.

When R; =R, = 0 the results of calculations by (20) agree with similar calculations made in [6] on
the assumption of a sufficiently large optical thickness of the layer.

An analysis of the experimental results on determination of the coefficients of heat conductivity of
dropping liguids [6] indicates a substantial effect of reemission in the investigated media. In this connec-
tion, the determination of the coefficient of effective heat conductivity, which within a small temperature
interval in an absorbent and refracting medium is written as

16 n?
hef =@+ 0T + —= - ——=0, TF (b, Ry, R), (29)
%

acquires special importance. The results of calculating the radiant-conductive heat flux (g = —Aef(AT/ 9))
with consideration of (23) with respect to the average temperature value of the medium (T = T) agree well
with the numerical calculations by (11).

NOTATION
& = (T “Tz)/(Ti - Tz):
g = Ti/ T, are the dimensionless temperatures;
N =N, @/
N}\*M = )\*X/40-0T§k is a dimensionless radiation—conduction parameter;
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Aj, Rj
& =q/o(T5
Ey =0y
S
X
hy =x6, h=ny
¢ =y/6="h/hy
Subscripts

is an exponential integral;

are the absorptance and reflectance of the gray bounding surfaces;
is the dimensionless radiant-conductive flux;

is the density of equilibrium radiation;

is the thickness of the layer of the medium;

is the absorption coefficient;

are the optical thickness and depth of the layer, respectively;

i=1,2 is the numeration of the boundaries;
* is the subscript of the characteristic parameter.
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